Bioindustry: A Description of California's Bioindustry and Summary of the Public Issues Affecting Its Development
By Gus A. Koehler, PhD.

Return to table of contents


ETHICAL ISSUES AND RISK ASSESSMENT IN BIOTECHNOLOGY


There is a rich public debate about how the potential risks associated with biotechnology methods and bioindustry products should be assessed and about whether and how bioethics should influence public policy. A general structure for guiding public policy discourse is emerging but is not fully developed. Groups perceive risks differently depending on their culture, scientific background, perception of government, and other factors. Expert opinion supports a range of positions. 194 Deeply and honestly held but often conflicting beliefs and values about nature, animals, and the community good animate the debate. The result is that biotechnology issues are often highly contentious and debated on both scientific and ethical grounds. Two contemporary examples are:

Biotechnology's risks are sometimes purely conjectural. Without research and clinical trials, risks cannot be fully assessed. Yet conjectural and ethical issues are important because biotechnology affects not only human practices and economic sectors, but also medical practices and the relationship between humanity, animals and the environment. In Paul Thompson's view,

[Biotechnology] is not simply another type of mechanical or chemical creation aimed at making the world better for us. In this instance, we are not simply reshaping matter, but are harnessing life. By manipulating life and natural evolution, we are taking the process that shaped our existence and that of every other living organism on the planet and restructuring it for our own benefit. 196

Public Policy Debate

There are many complex and emotionally charged ethical issues that the development of biotechnology poses for the first time or reframes. This paper can only touch on some of them. Federal and state governments are attempting to grapple with these issues and create a framework to deal with them.

Three Federal panels addressed bioethical issues prior to 1983:

These federal panels had a major impact on bioethical debate and risk assessment. For example, the President's Commission:

. . . supplied ethical premises and moral frameworks to reform the determination of death to include whole brain death, to formulate the evolving consensus on criteria for decisions to forgo life-supports (including artificial feeding and hydration) in incapacitated patients, and to lead the way to national policy on recombinant DNA research and the ethical aspects of human gene therapy. 198

Except for the National Institutes of Health-Department of Energy Working Group on Ethical, Legal, and Social Implications of the Human Genome Project, bioethical issues have been analyzed since 1983 on an ad hoc basis by temporary panels leading to delayed discussions, restricted scope, and inconsistent policy positions between panels. Congressional attempts to create a new national commission in 1990 to examine bioethical issues were unsuccessful, primarily due to a highly contentious debate over fetal research.

Bioethics examines broad issues such as animal rights and welfare, human testing, and the potential effects of genetically engineered species on other species and the environment. Risk assessments analyze the relative risks posed by possible toxic, pathogenic, and ecological effects of biotechnology and bioindustry. There are three broad analytical approaches to risk assessment:

States and the federal government generally focus on the second approach, the characteristics and environmental risks of the altered organism, and not on the processes used to produce it or on possible natural rights. This "organism-in the environment" approach to risk assessment involves evaluation of any of the following: 199

Creation of New Genomes and Genetically Engineered Biologically Active Substances

The science of developing transgenic animals is just beginning. Critics contend that it raises both animal physiological (possible loss of function or generation of deformities) or psychological problems (unacceptable levels of stress or loss of function) and associated ethical issues. A 1989 statement, "Consultation on Respect for Life and the Environment," signed by the National Council of Churches, the Foundation on Economic Trends, and the Center for the Respect of Life and the Environment, called for a moratorium on transgenic animal research. The statement asserted that such technology "portends fundamental changes in the public's perception of, and attitude towards animals, which would be regarded as human creations, inventions, and commodities, rather than God's creation and subjects of nature." 200 For example, during their development transgenic swine had many serious problems:

Those animals developed abnormally and exhibited deformed bodies and skulls. Some had swollen legs; others had ulcers, crossed eyes, renal disease, or arthritis. Many seemed to suffer from decreased immune function and were susceptible to pneumonia. All were sterile. 201

Should we understand animal well-being to include an animal's entitlement to certain key traits that it would be unethical to select against or to seriously weaken? 202 Should transgenic animal research and use be restricted to certain species? 203 How are each of these questions to be reconciled with potential improvements in human health that could result from such research?

In contrast, the U.S. Department of Agriculture, the Biotechnology Industry Organization, and the American Medical Association argue that the creation of altered animals is medically and economically beneficial for humans and should continue.

Is the legal status of a transgenic animal that is owned by its creating company different from a domesticated animal? How do existing animal welfare statutes (humane treatment) apply to such animals? Each of these issues are magnified by the emerging ability to mass-produce large numbers of bioengineered animals such as genetically identical sheep and cattle that could become a primary source of fiber and food.

The deliberate manipulation of the gene line to achieve desirable human characteristics by altering sperm genes or to inserting genes from other species into human sex cells also has serious ethical implications. For example, is it ethical to make inheritable changes in the human genome affecting the characteristics of individuals that would be born with it? Who has the right to make a genetic therapy decision involving a fetus, children, or other? Should such guidelines extend to fetuses not brought to term for experimental purposes? 204 Some of these issues may be addressed in guidelines being developed by the National Institutes of Health.

Ethical Debate On Patenting Life

In May 1995, a large coalition of religious leaders--Catholic bishops, Protestant and Jewish leaders and groups of Muslims, Hindus and Buddhists--announced its opposition to patents on human and animal life. The coalition did not oppose genetic engineering or biotechnology, but rather patenting human genes or organisms. It contends that such patents violate the sanctity of human life and reduce the "blueprint of evolution" to a marketable commodity. The group argues that life is a gift from God that should be cherished and nurtured. To reduce life to a commodity is to turn it into a product that can be owned and manipulated for profit alone, according to the group. 205

A second broad coalition of U.S. and international indigenous peoples, consumer, environmental, and other non-government groups issued the "Blue Mountain Declaration" in June 1995, declaring, in part,

The humans, animals, microorganisms and plants comprising life on the earth are part of the natural world into which we were all born. The conversion of these life forms, their molecules or parts into corporate property throughout patent monopolies is counter to the interests of the peoples of the world.
No individual, institution, or corporation should be able to claim ownership over species or varieties of living organisms. Nor should they be able to hold patents on organs, cells, genes or proteins, whether naturally occurring, genetically altered or otherwise modified. 206

This group also strongly opposes federal funding for the Human Genome Diversity Project. In particular, it is concerned about gathering samples of human genetic material from indigenous communities around the world. Related issues include ownership of cell lines, informed consent before providing the sample, patenting of genetic sequences, and who should benefit from the sale of related products.

Counter arguments are presented in the patenting (p. 38), human biological materials ownership (p. 41), and human and animal related products (p. 3-1) portions of this paper. These issues are currently under consideration by the courts and various professional organizations. Generally, the trend appears to be in the direction of allowing private ownership of laboratory-created organisms and the continued collection of human genetic material, on the grounds that the results are beneficial to humanity.


Organ Transplants And Embryological Tissue

Organ transplants and the availability of embryological tissue for research are important and difficult issues for modern medicine. Many lives are prolonged or saved every year through organ transplants. The National Organ Transplantation Act prohibits the sale of human tissue and organs for transplantation. This prohibition does not apply to non-transplantation purposes, including the sale of organs and other parts, such as embryological tissue, for research. 207

Fetal organs and tissue are believed by some researchers to be essential to research that might lead to alleviation of Parkinson's disease, diabetes, and other serious illnesses.

The federal government banned federally funded human embryology research for 15 years, (1979 to 1994), although some research continued with private funding. President Clinton has ordered that no federal funds be spent on embryos created for research. 208 However, the order did not specifically forbid support for research on human embryos.

The National Institutes of Health convened an ad hoc Human Embryo Research Panel to examine the issue of embryo research. In 1994, the panel found that such research could make substantial contributions and agreed that pre-implantation embryos should receive serious moral consideration but not to the same degree as infants and children. The panel restricted its attention to research on pre-implantation embryos, or multi-cell clusters that are less than 14 days old and that are without a definite nerve system. The panel recommended an advisory process similar to that being followed for gene therapy, and contended that federal funding would help to establish consistent public review of the research. 209

Researchers obtain fetal tissue from hospitals and clinics. Some clinics have developed an informed consent form for patients giving permission to use fetal tissue from an aborted fetus for research or organ transplant. However, one author contends that, "there has been virtually no effective policing of fetal organ harvesting by the federal government or any state agency," and that such appears unlikely. 210

Animal to Human Organ Transplants

The area of organ transplants from animals to humans is developing so rapidly that the National Academy of Science's Institute of Medicine has created a committee to examine the practice. 211 Issues that the Institute will examine include, "How to protect the rights of the first 'pioneer' patients? How to prevent the introduction of dangerous animal pathogens into the human population? And will the public find the idea of transplanting animal organs into humans acceptable?" 212

The FDA has also expressed concerns about animal-to-human transplants. Transplants might allow dangerous pathogens in animals to enter humans. Researchers plan to screen tissues for known viruses and to monitor recipients for infectious disease. However, screening for known viruses may not be adequate to apprehend new pathogens. The FDA wants stricter safeguards that could include improved tests for pathogens, protocols to quarantine patients, and the creation of colonies of "clean" animals. 213

Bioethics and Human Diagnostics

Testing for genetic defects is generally considered to be helpful and to increase possible treatment options. The issue becomes much more complex when genetic information has implications for reproductive choice or portends an unhealthy future for a currently healthy person (for example, having a mastectomy to prevent the potential future occurrence of a genetically-based cancer). Related issues include: disclosure of a genetic defect; availability and affordability of genetic counseling and health insurance; and employee screening. Screening for genetic diseases is controlled by the National Genetic Diseases Act, which provides for research, screening, counseling, and professional education for people with Tay-Sachs disease, Cystic Fibrosis, Huntington's disease, and a number of other conditions in which genetic mutations may be involved.

The use of genetic testing in the workplace can involve genetic screening or genetic monitoring. Screening involves a one-time test to detect a pre-existing trait in a worker or job applicant. Genetic monitoring involves multiple tests of a worker over time to determine if an occupational exposure has induced a genetic change. In 1989 five percent of the Fortune 500 companies surveyed either were using or had used employee genetic monitoring. [214] Genetic monitoring is reliable at the population level, not the individual employee level. There are three principal issues: [215]

The implementation of genetic testing can affect job applicants and workers, employers, and society differently. The impact varies according to whether the test performed is for genetic monitoring for chromosomal damage due to workplace conditions, genetic screening for susceptibilities to occupational illness, or genetic screening for inherited conditions or traits unrelated to the workplace but that could affect health insurance costs. Employees may wish to be genetically tested to track their health status but be concerned that the information could be used to remove them from the workplace, to deny insurance or keep them from being hired. On the other hand, employers contend that they need such information for hiring purposes and may wish to use genetic screening tests, establish conditions for employee participation, and implement consequences. Such employer practices are consistent with existing pre-employment medical testing practices. The Office of Technology Assessment (OTA), after a review of the issues involved, found:

A balance must be struck between promoting one party's autonomy and compromising that of another. If employers are free to implement and enforce genetic monitoring or screening policies, the autonomy of job applicants and employees will be limited. Conversely, giving the applicant or employee complete freedom to protect his or her own interests would restrict the freedom of the employer and, in some instances, present risk to co-workers or family. [Guidelines could] minimiz [e] occupational illness without threatening privacy or confidentiality, denying equality of opportunity, or stigmatizing workers. 216

Federal legislation (including the Occupational Safety and Health Act, the Rehabilitation Act of 1973, Title VI of the Civil Rights Act of 1964, the National Labor Relations Act, and the Americans with Disabilities Act) provides some protections against genetic testing and screening abuses, particularly against unilateral employer imposition of genetic monitoring and screening, discrimination, and breaches in confidentiality. States have also been active in this area, adopting legislation concerning genetic screening and employment. [217]

The ability to test for possible inherited tendencies such as high blood pressure and other heart-related diseases, diabetes, and cancer has important implications for access to health insurance. Health insurance could become too expensive for some people. In the 1970s some people were denied insurance, charged higher premiums, or denied jobs because they tested positive as carriers of sickle cell anemia (a genetic condition inherited by some African Americans). 218 More recent studies have documented cases of genetic descrimination against healthy persons with a gene that predisposes them or their children to an illness. "In a recent survey of people with a known genetic condition in the family, 22% indicated that they had been refused health insurance coverage because of their genetic status, whether they were sick or not." 219

Genetic information is already requested on health insurance applications. According to a 1992 OTA survey:

. . . insurers generally believe that it is fair for them to use genetic tests to identify those at increased risk of disease, and that they should decide how to use that information in risk classification. . . .  [However,] over the next decade, O.T.A.'s survey indicates the vast majority of health insurers that offer individual coverage or medically underwrite groups do not anticipate requiring applicants to undergo genetic screening for disease, predisposition, or carrier status. Thus, whether or not genetic information is available to health insurers hinges on whether individuals who seek personal policies, or are part of medically underwritten groups, become aware of their genetic status because of general family history, because they have sought a genetic test because of family history, or because they have been screened in some other context. Even then, a majority of respondents to O.T.A.'s survey reported they thought it "somewhat unlikely" or "very unlikely" that they would be using genetic information for underwriting. [Italics in the original.] 220

Thirteen states have passed genetic testing laws. 221 Most of the laws are narrowly drawn and attempt to prevent discrimination such as denial of insurance or employment because of a genetically identified disease. For example, an Ohio law prohibits insurers from requiring potential clients to submit to genetic tests as a condition of coverage. 222 Recent state actions regarding genetic testing include: 223

In a related decision, "...the U.S. Equal Employment Opportunity Commission has concluded that healthy people carrying abnormal genes are protected against employment discrimination by the Americans with Disabilities Act." 224 The decision seems to limit the use of genetic screening. California Department of Fair Employment and Housing regulations protect employees who have an increased likelihood of developing a physical handicap, but it is not clear whether this rule applies to genetic monitoring.

In January 1995, a new California law took effect prohibiting health insurers from discriminating against an applicant by increasing rates because of genetic traits when the person has no symptoms of any disease or disorder. Insurance companies are also prohibited from requesting or providing genetic information without prior authorization. Chaptered legislation introduced by Senator Johnston in the 1995 session (SB 1020) extends this provision by prohibiting insurance companies from requiring a higher rate or charge or offering or providing different terms, conditions, or benefits on the basis of a person's genetic characteristics. SB 970 (Johnston, 1995) would expand the definition of medical condition under the Department of Fair Employment and Housing to include discrimination against people who have an increased likelihood of developing a physical handicap due to genetic problems.

Federal law limits state protection against insurance coverage genetic discrimination. Self-funded insurance plans are exempted from state law by the federal Employee Retirement Income Security Act. Nationally, about one-third of the non-elderly insured are covered by such plans. In addition, most state laws prohibit discrimination based on genetic tests carried out in a laboratory. However these laws often do not extend that protection to use of genetic information gathered by other methods that trace genetic inheritance or to disclosure of a request to have a genetic test. 225

Recently, the National Action Plan on Breast Cancer and the Working Group on Ethical, Legal, and Social Implications of the Human Genome Project developed a set of recommendations and definitions for state policy makers to protect against genetic discrimination. 226

Genetic counseling services are important to individuals and families for understanding the results of genetic tests. These services also face serious ethical dilemmas. For example, a parent may refuse to share a diagnosis of an inherited tendency for colon cancer with the family, including the children. To honor the patient's request might harm the rest of the family. 227

In 1993, a panel of the National Academy of Sciences concluded that federal oversight of gene testing needs to be improved. 228 The Health Care Financing Administration and the Food and Drug Administration are both responsible for ensuring the quality of testing in commercial laboratories. Currently the Health Care Financing Administration has no specific standards for laboratories that analyze DNA, and inspectors are not trained to evaluate the appropriate execution of DNA tests. The Food and Drug Administration requires that manufacturers obtain approval before marketing laboratory test kits and that laboratories offering experimental genetic tests be cleared and approved by the FDA. 229s

Field Testing and Growing Genetically Engineered Crops

The field testing and release of genetically engineered plants and crops remains controversial but is widespread. Small-scale field tests of genetically-engineered crops have been under way in the U.S. for almost six years. Regulatory standards have been developed, and crops approved for testing and release. Since 1987, the U.S. Department of Agriculture has approved more than 860 applications and notifications to field-test transgenic crops. 230 More than 1,025 field tests of genetically modified plants were conducted in 32 countries between 1986 and 1993. Thirty-eight different plant species with nearly 200 different engineered properties have been tested in the field to date. By the year 2000, there may be as many as 400 different, economically important genetically modified plants under field evaluation. 231

As noted above, the USDA has recently expedited approvals for field-test permits. In 1995, the EPA approved the first pesticidal transgenic plants (corn, potato, and cotton plants) for "limited" commercialization. Approval for full scale production is expected by 1996. 232

The U.S. National Academy of Sciences concluded in 1987, "There is no evidence of the existence of unique hazards either in the use of RDNA techniques or in the movement of genes between unrelated organisms." 233 The U.S. National Research Council agreed: "No conceptual distinction exists between genetic modification of plants and microorganisms by classical methods or by molecular techniques that modify DNA and transfer genes," whether in the laboratory, in the field, or in large-scale environmental introductions. 234

The EPA,

. . . does not believe that there will be adverse effects to humans, nontarget organisms, or the environment from the limited use of the products. . . . [T] here is no unreasonable risk of unplanned pesticide production through gene capture and expression of Bt [the pesticide plant gene] in wild relatives of the transformed plants. 235

Nevertheless, there is still considerable public disagreement over the implications of introducing genetically-engineered species into the environment for testing or commercial purposes. Critics have been successful at obtaining court injunctions to stop the release of biological materials into the environment. Some scientists and ecologists claim that unlike risk assessment for synthetic chemicals, "there is no commensurate methodology for assessing the risks of released organisms." 236 However, the overall likelihood of harm could rise as the number and variety of crop releases increase. If a problem occurs it could be high-risk with long-term unexpected consequences. Among the possibilities:

There is preliminary evidence that seems to support some of these concerns. Some exchanges of genetic information between plants in the field may occur by way of bacteria 237 or viruses:

Evidence is rapidly accumulating that a blizzard of genetic material blows freely through the microbial world--not only between bacteria of the same species but also between members of distantly related species and between bacteria and viruses. "In terms of the flux of DNA, the general impression is that it goes anywhere and everywhere," says Julian E. Davies, a microbiologist at the University of British Columbia. . . . If environmental stress promotes gene exchange between bacterial species, genes deliberately engineered into microorganisms might spread more easily in nature than they do in the laboratory. . . . Experiments reported in Science in March [1994] indicate that plant viruses can combine the RNA that constitutes their genes with RNA from genes of genetically engineered plants. 238

Other scientists believe that the problem may not be significant, as "the potential benefits of engineered resistance genes far outweigh the vanishingly small risk of creating new and harmful viruses." 239

In some cases, a permit must be obtained from the USDA to begin limited field testing. The review often includes assessment of whether the product meets federal environmental-assessment standards and the environmental requirements of the Plant Pest Act. The EPA has developed guidelines for evaluating modified microorganisms under the Toxic Substances Control Act and for small-scale field testing of plants that produce pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act. 240 These processes are considered by the respective agencies and industry to be more than adequate for evaluating new organisms, detecting any viral recombination that might create new, potentially high-risk viruses, 241 and for field testing pesticide producing plants.

Regulatory decisions on field testing seriously affect research agendas. For example, after the Environmental Protection Agency refused Monsanto's request to field test a new genetically engineered bacterium to improve plant resistance to frost, the company dismantled its entire research program on microbial biocontrol agents. (Monsanto remains very involved in other biotechnology research areas.) 242

Some ecologists remain concerned about the need for additional information beyond that required by the USDA and EPA on a species' ability to survive, proliferate, and disperse in nature, and about the potential for genetic exchange of materials between species. 243 One analysis concludes,

. . . the standard approaches to risk assessment and management employed by the regulatory agencies are inadequate to the task of properly assessing the advisability of such experiments, as well as the even more significant prospect of widespread commercial use of genetically engineered organisms in agriculture. 244

Jack Dekker and Gary Comstock, of Iowa State University, propose that ethical and technical criteria be developed and included in the regulatory process to address the issue:

We . . . need a rational basis on which to make evaluations of this new biotechnology. The technical aspects of their release require a logical guide to the ecological, environmental, and biological effects the release might have in sustainable agroeconsystems. The initial step should include an assessment of effects associated with population ecology, population genetics, environmental degradation, consumer health and farm economic viability due to the resistant crop-herbicide pair. 245

Existing field experiments have not resolved the debate. There are conflicting studies with differing answers. These findings show just how complex and unresolved the issue is. For example, one research effort found that transgenic sugar beets could transfer genes to weed relatives. Other evidence indicates that viral RNA or DNA inserted in a plant to make it virus-resistant may combine with genetic material from an invading virus to form new, more virulent strains. But, recent work on the transgenic squash has "found no evidence that wild squash have bred with transgenic plants to form virus-resistant wild squash." 246 Despite concerns expressed by some observers, scientists consider it highly unlikely that the squash's wild relatives could obtain genetically engineered benefits from commercial relatives or that "novel recombinant viruses could crop up from [squashes] infected by wild viruses." 247 It might take a number of unlikely conditions occurring in the environment before new or damaging recombinant viruses could spread. 248 A more recent Danish study found that a commercial crop called oil seed rape containing a herbicide resistant gene can cross-fertilize with a weed called Brassica Campetris. Both plants are from the same mustard family. 249 The bioengineered gene is present in the crossbreeds and is passed on to subsequent generations.

Large scale plantings of transgenic crops might resolve some of these questions:

Researchers are divided on just how seriously to take fears [associated with large scale release of biological engineered plant releases into the environment] , but they agree on one thing: small, carefully managed experimental plots have yielded insufficient data on transgenic hazards. What's needed to gain a complete picture of genetic exchanges between transgenic crops and other plants and to measure the true environmental impacts are tests covering thousands of acres--or commercialization of several transgenic crops. 250

According to a report in Science, "Chinese scientists have recently launched massive field trials of transgenic tobacco, tomatoes, and rice on thousands of hectares." 251 Scientists in developing countries who are faced with food production problems may take more risks than others, the report notes. 252

Recent research also raises questions about the adequacy of models used to predict the dispersion of genetically engineered plants into the environment.

A recent Scottish study shows that a previously used pollen dispersion model--which would probably have been used to predict how fast genes from a transgenic crop leak into the environment--badly underestimated the amount of pollen that spreads from large oilseed rape fields. The study's authors discovered that pollen can disperse much farther than the model predicts; pollen levels that had been expected no more than 100 meters away were observed at distances up to 2.5 kilometers. The study thus demonstrates the principle that any genes that scientists introduce into a crop can quickly spread into wild populations. A herbicide-resistant strain might cause "superweeds" that would be difficult to contain. 253

The possible accidental release of potentially damaging organisms into the environment extends to other organisms as well. For example, efforts by Australian scientists to restrict a deadly virus (used in experiments against wildly proliferating European rabbits) to an off coast island failed. "Officials foresaw little possibility of the virus's escaping from the island, but escape it did." 254

Reframing Bioethical Issues for Public Policy

There are inherent conflicts involved in how biotechnology develops as an industry and the way ethical questions and public policy positions are discussed and adopted. Key factors include, for example:

The conflict between the ethical issues that emerge as research proceeds and discoveries are made, and the time and other pressures to immediately move products to the market place create public policy issues that cannot be easily resolved for a number of complex and interacting reasons:

Potential health, economic, and business benefits are huge. The potential human and financial rewards that could emerge from curing serious diseases, increasing the food supply, and substantially extending and improving the quality of human life are very large. It is this possibility that drives researchers, investors, and potential benefactors.

Biotechnology/bioethical issues are not simple. The underlying science is complex, as are the resulting issues. Bioethics is a new field that is developing right along with biotechnology.

It is difficult to know which biotechnology-induced changes in an organism or production technology might result in large scale social or economic changes. The often new relationship of the discovery to the greater environment, human health, marketplace, and to future generations is unknown. The law of unintended consequences is a major concern.

Measurements of the socio-economic and market effects of a new technology are hard to make. Methods for measuring expected human, ecological, industrial, and financial risks, short and long term costs/benefits, and other relevant factors are just being developed. It may be particularly difficult to estimate the long terms costs of biotechnology innovations, given their often unpredictable effects.

There is pressure to achieve immediate short term economic gains that might have essentially unknowable long-term effects. For example, patenting corn, rice, potatoes and wheat and the accompanying farming and marketing methods might reorder the entire agricultural industry and rural life.

Issues are set within conflicting time horizons and value systems. Research and marketing time horizons are relatively short, emphasizing immediate financial pay-off and scientific prestige. In contrast, bioethics and public policy questions often involve a long-term time horizon (generations of people), whole systems (ecological or industry), and the quality of individual and community life.

The definition of what "safe" means and how to evaluate an acceptable level of risk is still evolving. For example, how should manufacturers label bioengineered products and other products that may use genes inserted from plants to which people might be allergic? The large scale availability of genetic testing and its implications for the workplace and for inherited health problems are issues that are just now being addressed.

There is strong competitive pressure to go forward with new and potentially risky technology in a global market. European, Asian and other nations are fiercely competing with each other to develop and dominate a segment of the biotechnology industry, if not the industry itself. As noted, China (page 61), has already embarked on a series of field tests that would probably not be approved in the West.

Next Chapter: Business Needs of Biotechnology

Return to table of contents